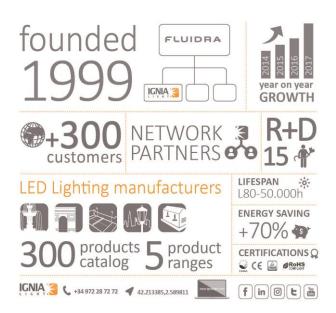


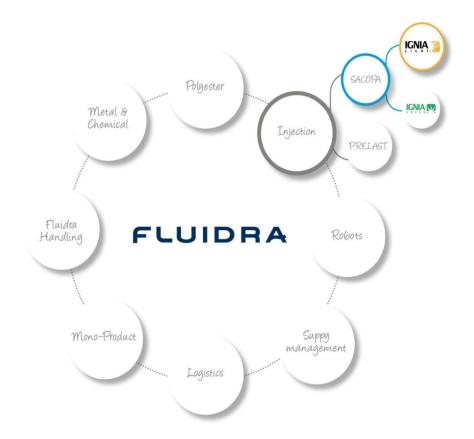
IV Congreso de Ingeniería Municipal

Barcelona 25 y 26 de Octubre

ILUMINACIÓN EFICIENTE Y SOSTENIBLE CON TECNOLOGIA LED

Sr. Tomás Cortada Quera


Lighting up the World, Efficiently


ignialight.com

f (in (g+) **t**

Nuestra empresa

SACOPA forma parte de la división industrial de FLUIDRA

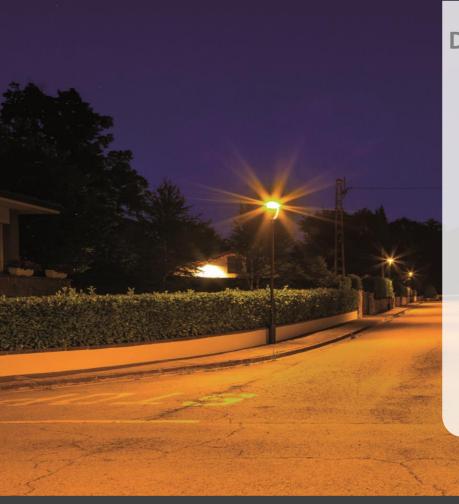
Nuestras instalaciones

Instalaciones tecnológicamente punteras

Laboratorio lumínico de última generación

Iluminación eficiente y sostenible con tecnologia LED

CIM 2018



Importancia de la eficiencia y la sostenibilidad en alumbrado público manteniendo la calidad y la seguridad

- Eficiencia: Reducción del consumo
 - Eficiencia de la luminaria
 - Distribución lumínica
 - Regulación
- Sostenibilidad: Disminución del impacto medioambiental
 - Contaminación lumínica
 - Temperatura de color
 - Confort visual
 - Materiales y procesos de fabricación
 - Vida útil

Definición de requerimientos en alumbrado de la vía pública

 REAL DECRETO 1890/2008, Reglamento de eficiencia energética en instalaciones de alumbrado

Niveles según tipología de la vía, uso y tipo de tráfico

Aplicación en Catalunya:

 DECRET 190/2015: desplegament Llei 6/2001
 ordenación ambiental de alumbrado para la protección del medio nocturno.

Zonas de iluminación protegida

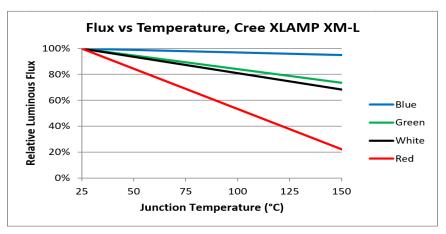
Eficiencia de las luminarias

Rendimiento de luminarias según hoja de datos de fabricantes importantes

Fabricante A

* El flujo nominal es un flujo indicativo @ Tj 25°C basado en los datos proporcionados por el fabricante de LED. Depende del tipo de LED utilizado y puede cambiar de acuerdo con los rápidos y continuos avances en la tecnología LED.

157,9 lm/W


Fabricante B

4000K			
F [lm] ²	ε [lm/₩]		
2690	174		
3717	163		
4972	160		

E(Im/W): Efficiency Leds

174 lm/W

	VOLTAGE RANGE Note.5	100 ~ 305VAC 142 ~ 431VDC (Please refer to "STATIC CHARACTERISTIC" section)			
	FREQUENCY RANGE	47 ~ 63Hz			
	POWER FACTOR	PF ≥ 0.97/115VAC, PF ≥ 0.95/230VAC, PF ≥ 0.92/277VAC@full load (Please refer to "POWER FACTOR (PF) CHARACTERISTIC" section)			
	TOTAL HARMONIC DISTORTION	THD< 20%(@load≧50%/115VC,230VAC; @load≧75%/277VAC) (Please refer to "TOTAL HARMONIC DISTORTION(THD)" section)			
INPUT	EFFICIENCY (Typ.)	85% 88% 89% 90% 90%			
	AC CURRENT	0.7A / 115VAC			
	INRUSH CURRENT(Typ.)	COLD START 50A(twidth=350µs measured at 50% Ipeak) at 230VAC; Per NEMA 410			
	MAX. No. of PSUs on 16A CIRCUIT BREAKER	5 units (circuit breaker of type B) / 8 units (circuit breaker of type C) at 230VAC			
	LEAKAGE CURRENT	<0.75mA / 277VAC			
	NO LOAD / STANDBY POWER CONSUMPTION	No load power consumption <0.5W for Blank / A / Dx / D2-Type Standby power consumption <0.5W for B / DA-Type			

Driver

OPTICAL PROPERTIES

Viewing Angle (FWHM) Asymmetric

Light Beam Type Streetlighting

Efficiency 93 %

Lentes

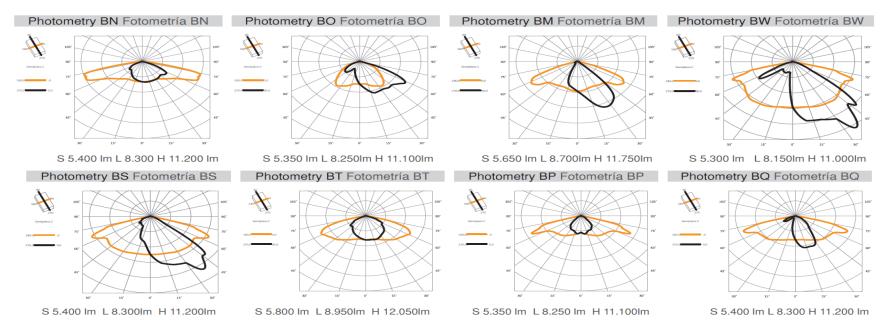
• Transmisión de luz visible: depende del tipo de vidrio; para el vidrio Float: 87%, Vidrio Armado 75%, Translúcido 70 a 85% (estos son valores aproximados para vidrio de 6 mm basados en luz difusa incidentes desde el cielo sobre la ventana). Los vidrios color y reflectivos tienen valores significativamente menores (ver capítulo 4: Transmisión térmica en vidrios).

Comparar datos reales de luminarias completas

Pedir fotometrías reales para realizar simulaciones lumínicas

Desconfiar de los valores fuera de rango de mercado

Distribución de luz. Fotometrías

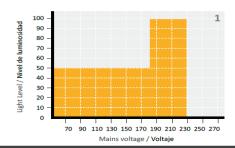

Distribución de luz. Fotometrías. Diseño lentes.

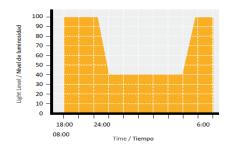
Mejor aprovechamiento de la luz generada (lúmenes)

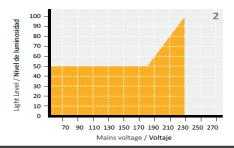
Permite bajar potencia de luminarias. Mayor eficiencia

Sistemas de regulación y control

Smart Lighting. Especificaciones según normativa


Real Decreto 1890/2008: En las instalaciones de alumbrado público superiores a 5kW se podrá reducir el nivel de iluminación en horario nocturno




Decret 190/2015: Instal·lacions d'enllumenat públic superiors a 1KW tindran que disposar de possibilitat de reducció de flux lluminós

Protocolos de comunicación

- 1-10V
- DALI
- Power Line Communications
- Radio Frecuencia RF.....

Contaminación lumínica.
Temperatura de Color Correlacionada CCT
y espectros de emisión permitidos
según Decreto 190/2015

Análisis espectros de temperatura de color

Decreto 190/2015: desarrolla de la Ley 6/2001, de ordenación ambiental del alumbrado para la protección del medio nocturno

Objetivo: Regulación de instalaciones y luminarias en función de la contaminación luminosa que puedan producir

Zonificación: Establece 4 zonas de protección frente a la contaminación luminosa (E1, E2, E3 y E4)

Establece los límites de: emisión en hemisferio superior, iluminación intrusa, iluminancias máximas, horarios,.....

Análisis espectros de temperatura de color

Análisis espectros de temperatura de color

¿COMO TRATA EL DECRETO 190/2015 EL ESPECTRO DE RADIANCIA DE LAS FUENTES DE LUZ?

	E1	E2	E3	E4
PC-Ámbar 1800K	~	~	✓	✓
Blanco Cálido 3000K	×	~	~	~
Blanco Neutro 4000K	×	×	✓	✓
Blanco Cálido 2200K	×	~	✓	~

Ahorro en consumo energético y mantenimiento . Comparación VMCC/ LED y VSAP/LED

Ahorro consumo eléctrico

Datos instalación	VMCC	YLED
Número de luminarias	120	120
Horas funcionamiento a máxima potencia	12	6
Horas funcionamiento a media potencia	0	6
Días de funcionamiento al año	365	365
Precio KWh (€)	0,12	0,12

Datos luminaria	VMCC	YLED
Potencia lámpara (W)	125	40
Potencia equipo / Fuente alimentación (W)	18.75	

Cálculos de potencia consumida	VMCC	YLED
Potencia consumida diaria (KWh)	207	43.20
Potencia consumida anual (KWh)	75.555	15.768
Coste energético anual	9.066€	1.892€

Ahorro anual en consumo eléctrico (Kwh/any)	59.787
Ahorro anual en consumo eléctrico (€)	7.174 €

Ahorro reducción mantenimiento

Ahorro acumulado en los años de vida de la luminaria LED

Datos lámpara

Datos lampara	VIVICC	ILED
Vida lámpara aprox. (h)	8.000	50.000
Ciclos de vida de VMCC en vida de YLED		6
Número total de lámparas a sustituir		720
Coste lámpara VMCC 125W		60€
Ahorro total en lámparas		43.200,00€
Tiempo de sustitución de la lámpara (horas)		0,50
Coste por hora operarios		20,00€
Coste camión pluma por hora		10€
Ahorro en trabajo de mantenimiento		10.800,00€
Ahorro total en mantenimiento		54.000,00€
Años de vida útil	2	12
Ahorro anual mantenimiento		4.500 €
Ahorro anual consumo eléctrico + mantenimiento		11.674 €

Ahorro 85%

133.269 €

Ahorro consumo eléctrico

Datos instalación	VSAP	YLED
Número de luminarias	120	120
Horas funcionamiento a máxima potencia	12	6
Horas funcionamiento a media potencia	0	6
Días de funcionamiento al año	365	365
Precio KWh (€)	0,12	0,12

VSAP	
VS.	
LED	

Datos luminaria	VSAP	YLED
Potencia lámpara (W)	70	40
Potencia equipo / Fuente alimentación (W)	10.5	

Cálculos de potencia consumida	VSAP	YLED
Potencia consumida diaria (KWh)	115,92	43.20
Potencia consumida anual (KWh)	42.331	15.768
Coste energético anual	5.077€	1.892 €

Ahorro anual en consumo eléctrico (Kwh/any)	26.542
Ahorro anual en consumo eléctrico (€)	3.185 €

Ahorro en reducción del mantenimiento

Ahorro acumulado en los años de vida de la luminaria LED

Datos lámpara	VSAP	YLED
Vida lámpara aprox. (h)	12.000	50.000
Ciclos de vida de VMCC en vida de YLED		4
Número total de lámparas a sustituir		480
Coste lámpara VMCC 125W		60€
Ahorro total en lámparas		43.200,00€
Tiempo de sustitución de la lámpara (horas)		0,50
Coste por hora operarios		20,00€
Coste camión pluma por hora		10€
Ahorro en trabajo de mantenimiento		7.200,00€
Ahorro total en mantenimiento		36.000,00€
Años de vida útil	3	12
Ahorro anual mantenimiento		3.000 €
Ahorro anual consumo eléctrico + mantenimiento		6.185 €

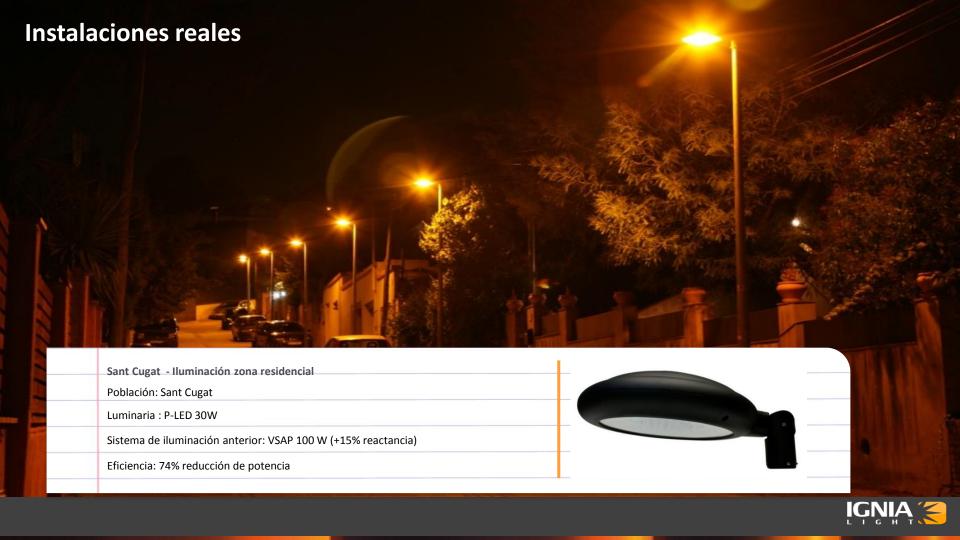
VSAP vs. LED

70.606 €

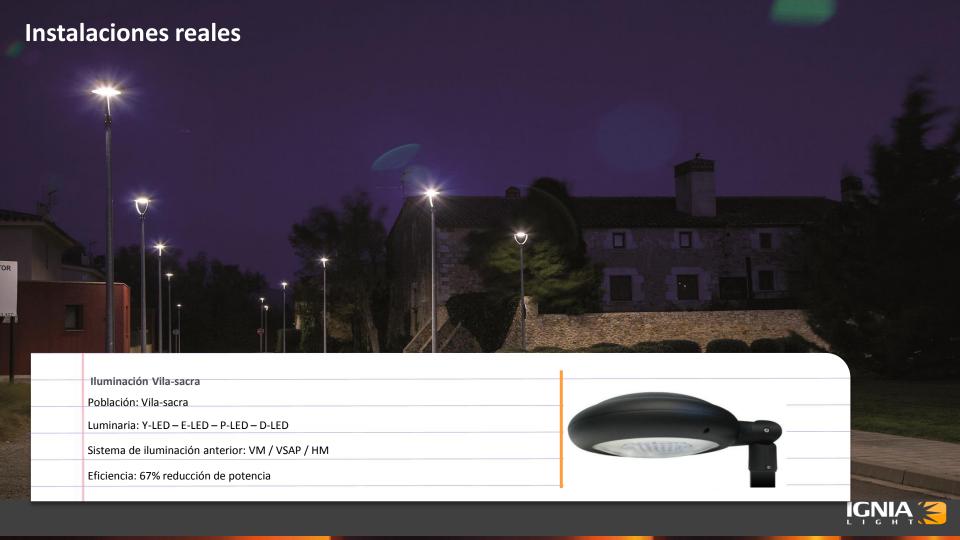
Casos de éxito: Instalaciones reales

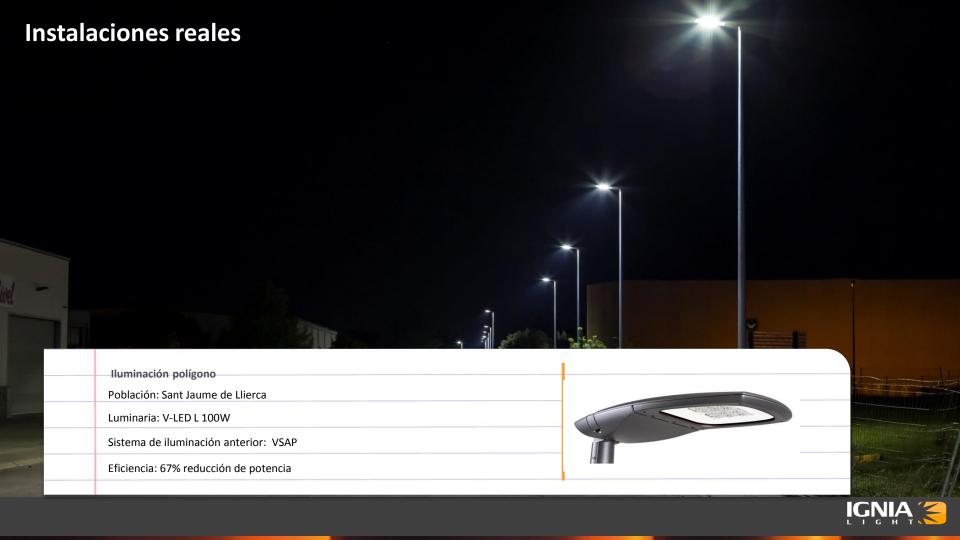
Instalaciones reales

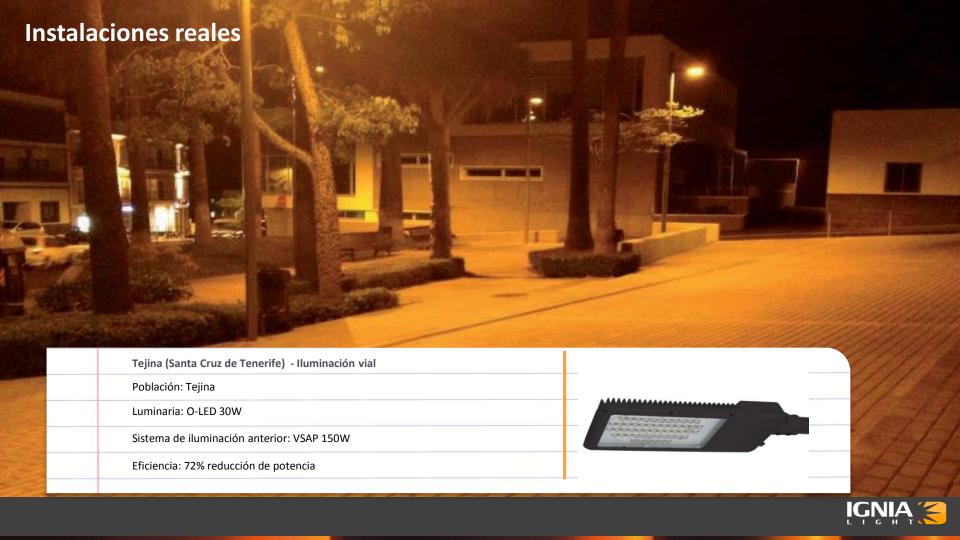
Población: Santa Pau


Luminaria: V-LED XL 130W


Sistema de iluminación anterior: VSAP 250 W (+15% reactancia)


Eficiencia: 55% reducción de potencia





ignialight.com

 $\text{f} \text{ in } \text{g}^+ \text{t}$